

SPECIFICATION

Product Name: Ultrasonic Oxygen Sensor

Model No: Gasboard-8500D Series

Version: V0.3

Date: Aug 7, 2019

Revision

No.	Version	Content	Date
1	V0.1	First revision	2018-11-26
2	V0.2	 Real product photo, physical dimension drawing, pin definition drawing modified by approved products; The detection precision of product specification parameter was modified from"±1.8%FS @(10~45)°C"to"±3%FS @(5~45)°C". Working voltage was modified from "DC 5-12V"to "DC 4.75-12.6V". 	2019-3-26
3	V0.3	Specification fonts was modified to Song typeface, Arial.	2019-8-7

Ultrasonic Oxygen Sensor Gasboard-8500D Series

Applications:

- Family portable oxygen concentrator, medical concentrator, large oxygen concentrator.
- ♦ Family ventilator, medical ventilator.
- ♦ The binary gas (include oxygen) detection.
- ♦ High-flow nasal cannula oxygen therapy ventilation
- ♦ Positive airway pressure ventilation

Description:

Gasboard-8500D series ultrasonic oxygen sensors are an economical gas sensor used to detect oxygen concentration in binary gases. By adopting ultrasonic detecting technology, these sensors are very stable, high accuracy, maintenance-free, no drift and no need to calibrate, response quickly, etc.. They are mainly designed for medical ventilator oxygen concentration measurement with high flow range up to 80L and for the large PSA generator.

Working Principle:

Ultrasonic concentration detection theory: when the binary gas mixture composition has molecular weight difference, sound travel speed varies from different gas composition, so as obtain binary gas concentration.

Main Feature:

- ♦ Diffusion and principle of ultrasonic measurement adopted to oxygen concentration measurement
- ♦ Used for oxygen concentration detection of large flow ventilator, mainstream, no need by-pass design
- ♦ Full scale matrix temperature and humidity compensation
- ♦ Quick response, stable measurement, high accuracy
- ♦ Self-calibration, maintenance-free, no drift
- ♦ Perfect EMC performance, long life span,
- ♦ Support serial port and analog output accurate measurements
- ♦ RoHS, REACH, CMC, CE certificated

Specifications

Ultrasonic Oxygen Sensor Specifications				
Sensor Type	Gasboard-8500D	Gasboard-8500D-P	Gasboard-8500D-RH	
Detection Method	Ultrasonic Principle			
Detection Range ^①	20.5 ~ 95.6% 20.5%-100% 20.5 ~ 95.6%			
Detection Accuracy	±3%FS @ (5~45)℃			
Detection Resolution	0.1%			
Response Time	<10s			
Working Temperature	5~50℃; 0~95%RH (non-condensing)			
Storage Temperature	-20~60°C; 0~95%RH below (non-condensing)			
Working Voltage	DC 4.75-12.6V			
Average Working Current	<50mA			
Communication	UART_TTL (3.3V)			
Dimension	L60.7*W26*H30 mm			
Life Span	≥5 years			

Remark① Oxygen concentration detection range 20.5%~95.6% is calibrated with PSA oxygen source. If use 99.99% pure oxygen as oxygen source, should add a coefficient to make a transfer, the formula is: Target concentration = (sensor reading * 1.142) - 3.42 Oxygen concentration detection range 20.5%-100% is calibrated with 99.99% pure oxygen. The reading value<20.5% is off as default, please contact Cubic if necessary.

Pin Definition

Drawing 1 Gasboard-8500D Series Pin Definition Drawing

NO	Pin	Description
1	VIN	4.75-12.6VDC power supply input
2	Rx	UART-Rx receiving (3.3V/5V compatible)
3	Тх	UART -Tx sending (3.3V)
4	GND	GND

Connector Type

Port	Terminal	Connector	Pin Pitch
J2	PH2.0-4A	PH2.0-4P	2.0mm

Pin Definition

Reference Circuit

Application Scenarios: UART TTL serial output

Drawing 2 UART Communication Connection Circuit

Communication Protocol

UART Communication Protocol

1 Protocol overview

- 1) Baud rate:9600, DataBits: 8, StopBits: 1, Parity: No, Flow Control: No
- 2) The protocol data are hexadecimal data. For example, "46" is [70] in decimal;
- 3) [xx] is single byte data(unsigned,0-255); In double byte, the high byte is in front of low byte;

4) The default is active sending, and the sending cycle is 0.5 seconds. If you need to read more other data, send the corresponding command directly to the host, and the host responds immediately.

2 Serial communication protocol formats

PC send format

Start symbol	Length	Order No	Data 1	 Data n	Cheksum
HEAD	LEN	CMD	DATA1	 DATAn	CS
11H	XXH	XXH	XXH	 XXH	XXH

Protocol format description

Protocol format	Description
Start Symbol	PC sending is fixed to [11H], module response is fixed to [16H]
Length	Length of frame byte,=data length+1 (include CMD+DATA)
Order No	Directive number
Data	Read or written data, the length is variable
Checksum	The sum of data accumulation, =256-(HEAD+LEN+CMD+DATA)

3 Serial protocol order number list

No	Function name	Order no
1	Read the measurement result of O2	0x01
2	Read the software version number	0x1E
3	Inquiry instrument serial number	0x1F
4	Open reading value<20.5%	0x02

4 Detailed description

4.1 Read the measurement result of O2

Send: 11 01 01 ED

Response: 16 09 01 DF1-DF8 [CS]

Function: Read the measurement result of O2

Explanation: O2 concentration = (DF1*256 + DF2) / 10 (Vol %)

O2 temperature value = (DF5*256 + DF6) / 10 (℃)

Attention: DF3 DF4 DF7 DF8 reserved

Remark: The default is active sending. The sensor can also output the value automatically without sending the command.

Communication Protocol

Response example:

Response: 16 09 01 00 CD 00 00 00 C2 00 1E 33

Explanation:

Hexadecimal convert into decimal: CD is 205; C2 is 194 O2 concentration = $0^{256} + 205 = 205 (20.5\%)$ O2 temperature value = $0^{256} + 194 = 194$ (19.4°C)

4.2 Read the software version number

Send: 11 01 1E D0 Response: 16 09 1E DF1-DF8 [CS] Function: read version number for module firmware Explanation: DF1-DF8 refers to the ASCII code of particular version number. For example: when module version number is 0.02.611, response data: 16 09 1E <u>30 2E 30 32 2E 36 31 31 38</u> Hexadecimal convert into ASCII code: 0.02.611 4.3 Inquiry instrument serial number

Send :11 01 1F CF

 $\label{eq:seponse:160B1F(SN1)(SN2)(SN3)(SN4)(SN5)[CS]} \\$

Function: read version number for module firmware

Explanation: instrument serial number of output software. SNn range is 0~9999,5 integer type constitute 20 serial number.

4.4 Open reading value<20.5%

Send: 11 02 02 00 EB Response: 16 0C 02 00 DF1 DF2 DF3 DF4 DF5 DF6 DF7 DF8 DF9 DF10 [CS] Function: Read the measurement result of O2 (0-100%) O2 flow = (DF9*256 + DF10) /10 (L/min) O2 concentration = (DF7*256 + DF8) / 10(Vol %) O2 temperature = (DF5*256+ DF6) /10 (°C) (gas temperature in Sensor chamber) Example: Response: 16 0C 02 00 5D 90 5D 7E 00 C2 00 CD 00 00 7B Instruction: Hexadecimal Convert into Decimal: CD is 205; C2 is194 O2 Concentration =0*256 + 205=205 (20.5%) O2 Flow Value=0*256+0=0 (L/min) O2 Temperature Value=0*256+194=194 (19.4°C)

Dimension

Reliability Testing

ltem	Requirement	Criterion	Sample (n) Failed (c)
	Indoor temperature requirement:25±2°C,humidity(50±10)%RH, after the sensor connect		
Flow performance	with serial port and power on, switchover the flow in 3L/min $\$ 5L/min $\$ 8L/min respectively to	Make new tests in different oxygen flow all can meet error criterion.	n=70 c=0
	make measurement of oxygen concentration and accuracy.		
Low temperature	Storing the sensor for 96H with no power under -20 $^\circ\!\mathrm{C}\pm2^\circ\!\mathrm{C}$ environment condition, then to	After staying under normal	
storage	test the measuring error of it under normal temperature condition.	temperature condition for 2 hours, the test all can meet error criterion.	
	Indoor temperature requirement:-10 $\pm 2^\circ C$,to test the measuring error of sensor under normal	After staying under normal	•
Cold operation	temperature condition after operating for 96H with electricity.	temperature condition for 2 hours, the test all can meet error criterion.	
High temperature	Storing the sensor for 96H with no power under $60^{\circ}C \pm 2^{\circ}C$ environment condition, then to	After staying under normal	
storage	test the measuring error of it under normal temperature condition.	temperature condition for 2 hours, the test all can meet error criterion.	
	Indoor temperature requirement:50±2℃,to test the measuring error of sensor under normal	After staying under normal	n=0
Hot operation	temperature condition after operating for 96H with electricity.	temperature condition for 2 hours, the test all can meet error criterion.	c=0
High-low temperature shock	Keep the sensor under -20°C for 60 mins, then switch it to 60 °C in 10s and stay for another 60 mins, this is one cycle, there are 10 cycles in total, the sensor is power off when testing.	After staying under normal temperature condition for 2 hours, the sensor accuracy should meet the specification standard.	
High temp &humidity	Place the sensor under high temp & humidity (40±2°C,95%RH),after working under rated voltage for 500H,to test the measuring error of it under normal temperature condition.	After staying under normal temperature condition for 2 hours, the sensor accuracy should meet the specification standard.	
	Standard :GB/T2423.17,place the sensor in the salt fog box under 35 $^\circ\!\mathbb{C}$ and spray it with	Keep the sensor under standard	
Salt spray test	Nacl solution (concentration is 5%) for 24 hours, then flushing it with distilled water and	environment more than 1 h and less than 2 h, it should no appearance	0
	drying it with airflow.	defect, no corrosion.	C=0
	Bare sensor should bear the specified vibration test in X/Y/Z direction, frequency range	No appearance defect after vibration	n=4
Vibration test	10~55~10Hz/min, amplitude 1.5mm, scan circulation 2 hours.	test, the sensor can meet basic performance test standard.	c=0
	Drop height: setting the height as specified weight according to standard GB/T 4857.18.	No appearance defect after drop test.	
Package drop test	Making the drop test according to the GB/T4857.5 standard. Test sequence is one corner,	no components fall off, the sensor	n=1 ctn
	three edges, six sides.	should work normally.	c=0

Product Code Instruction

Consultancy & After-sales Service

Cubic Sensor and Instrument Co.,Ltd

Contact number: 86-27-8162 8827

Address: Fenghuang No.3 Road, Fenghuang Industrial Park, Eastlake Hi-tech Development Zone, Wuhan, China

Postal code: 430205 Fax: 8627-8740 1159

Website: http://www.gassensor.com.cn

E-mail: info@gassensor.com.cn